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Accepted 30 October 2017 bacteria (GNB) in intensive care units (ICUs).

Available online xxx Aim: To assess the impact of removing patients’ sinks and implementing other water-safe

strategies on the annual rates of ICU-acquired MDR-GNB.

Keywords: Methods: This six-year quasi-experimental study was conducted from January 2011 to
Contaminated sink December 2016. The intervention was carried out in August 2014 in two adult ICU wards
Multidrug-resistant Gram- with 12 rooms each. To assess the changes in annual MDR-GNB rates before and after the
negative bacteria intervention, we used segmented regression analysis of an interrupted time-series. Crude
Infection control relative risk (RR) rates were also calculated.

Endemic environment Findings: The incidence rates of MDR-GNB were 9.15 and 2.20 per 1000 patient-days in the
Intensive care unit pre- and post-intervention periods, respectively. This yielded a crude RR of acquiring MDR-

GNB of 0.24 (95% confidence interval: 0.17—0.34). A significant change in level was
observed between the MDR-GNB rate at the first point of the post-intervention period and
the rate predicted by the pre-intervention time trend.
Conclusion: The implementation of a new water-safe policy, which included the removal
of sinks from all patient rooms, successfully improved the control of MDR-GNB spread in an
ICU with endemic infection. Our results support the contribution of sink use with the
incidence of MDR-GNB in endemic environments.

© 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

* Corresponding author. Address: Department of Infectious Diseases, Hospital Universitari de Bellvitge, Feixa Llarga s/n, 08907 Hospitalet de
Llobregat, Barcelona, Spain. Tel.: +34 93 2607274; fax: +34 93 2607637.
E-mail address: eshawp@gmail.com (E. Shaw).

https://doi.org/10.1016/j.jhin.2017.10.025
0195-6701/© 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Shaw E, et al., Control of endemic multidrug-resistant Gram-negative bacteria after removal of sinks and
implementing a new water-safe policy in an intensive care unit, Journal of Hospital Infection (2017), https://doi.org/10.1016/j.jhin.2017.10.025



nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

mailto:eshawp@gmail.com
www.sciencedirect.com/science/journal/01956701
http://www.elsevierhealth.com/journals/jhin
https://doi.org/10.1016/j.jhin.2017.10.025
https://doi.org/10.1016/j.jhin.2017.10.025
https://doi.org/10.1016/j.jhin.2017.10.025

2 E. Shaw et al. / Journal of Hospital Infection xxx (2017) 1-7

Introduction

Multidrug-resistant (MDR) Gram-negative bacteria (GNB) are
a major problem in healthcare settings worldwide [1—3]. These
bacteria are often involved in hospital outbreaks, and occur in
intensive care units (ICUs) [4—7]. The hands of healthcare
workers are the most important facilitator of cross-transmission
from colonized/infected patients or from contaminated envir-
onments where micro-organisms may persist [8]. Sinks have also
been associated with ICU outbreaks caused by MDR-GNB,
especially Pseudomonas spp. and Klebsiella spp. [9,10].

Accepted measures for controlling outbreaks caused by
these bacteria are hand hygiene, contact precautions, active
patient screening and environmental cleaning [11—13]. How-
ever, some researchers have reported that removing sinks was
also necessary for successful resolution of outbreaks [14,15].
Indeed, it has been shown that sinks continue to be contami-
nated by MDR-GNB in non-outbreak settings, especially when
used for handwashing by healthcare workers and the disposal of
body fluids. Therefore, sinks might contribute to the persistent
spread of these bacteria in endemic settings [16—18].

In our ICU, we have shown that enhancing infection control
measures, according to guidelines, facilitated the successful
control of endemic Acinetobacter baumannii [11,19]. Despite
maintaining these control measures, we continued to observe
progressive increases in the numbers of patients who acquired
clonal MDR Klebsiella pneumoniae and Pseudomonas aeruginosa
during their ICU stays. Molecular typing of MDR K. pneumoniae
clinical isolates showed sequence types (ST) ST326 and ST101 as
the dominant clones causing infections in the ICU [4]. Among the
infections caused by MDR P. aeruginosa, ST175 was the major
clone, followed by the carbapenemase producers ST235 and
ST253 strains [7]. Since these bacteria are associated with damp
environments, our infection control team hypothesized that
sinks could be reservoirs of infection and they proposed to
hospital managers the removal of sinks from ICU rooms.

Herein, we evaluate the impact of removing sinks from pa-
tients’ rooms as a part of a new water-safe policy on the
number of new patients acquiring MDR-GNB in our ICU
department.

Methods
Setting and study design

This was a six-year quasi-experimental study that comprised
a pre-intervention period of 43 months from January 2011 to
July 2014 and a post-intervention period of 29 months from
August 2014 to December 2016. Sinks were removed in August
2014. All interventions were performed at Bellvitge University
Hospital, a 700-bed teaching hospital located in the southern
metropolitan area of Barcelona that accepts referrals for more
than two million people requiring high-complexity procedures.
The intervention was implemented in two mixed (medical and
surgical) adult intensive care wards, each with 12 single rooms.

Outcomes

The primary outcome was the annual rate for all new
cases of ICU-acquired MDR-GNB bacteria, including both

Figure 1. A sink before the intervention.

K. pneumoniae and P. aeruginosa. The secondary outcomes
were the separate annual rates of new cases for ICU-acquired
MDR K. pneumoniae and P. aeruginosa.

Definitions

For analysis, only K. pneumoniae producing extended-
spectrum B-lactamases (ESBLs) and/or carbapenemase and
extensively drug-resistant (XDR) P. aeruginosa (producing
Verona integron-encoded metallo-p-lactamase (VIM) carba-
penemase or not) were considered MDR-GNB. A new case was
defined as an MDR-GNB recovered from a clinical sample in a
patient hospitalized in the ICU for >48 h. For surveillance, we
considered the first isolation in a clinical sample of each of the
MDR-GNB per patient (infection or colonization). Isolates ob-
tained from screening rectal swabs were not included.

Strategies for controlling MDR-GNB spread during the
study period

Sinks and water policy

Pre-intervention. Each room had a wall-mounted sink with
a shallow, stainless steel bowl and a plastic P-trap (Figure 1).
The water spout flowed directly into the sink drain, causing
splashes of water trapped in the P-trap. The distance from the
sinks to the patients’ beds or to the medication preparation
area was ~1m. There were no routine sink cleaning and
disinfection programmes nor any barriers to prevent splashing.
Healthcare workers used the sink water for handwashing and
for maintaining patients’ daily hygiene (for this, water was

Please cite this article in press as: Shaw E, et al., Control of endemic multidrug-resistant Gram-negative bacteria after removal of sinks and
implementing a new water-safe policy in an intensive care unit, Journal of Hospital Infection (2017), https://doi.org/10.1016/j.jhin.2017.10.025



nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮

nixp
高亮


E. Shaw et al. / Journal of Hospital Infection xxx (2017) 1—-7 3

mixed manually with 4% chlorhexidine soap). Water used for
maintaining patients’ daily hygiene was discarded in the room
sink.

Intervention. In August 2014, the two wards were closed to
remove the sinks from all ICU rooms, leaving only two sinks in
the central nurse room. We performed deep cleaning and
disinfection of drains and valves in these central sinks and
installed antibacterial water filters in the taps. Deep cleaning
entailed disassembling the sink valve and scrubbing with
detergent and disinfectant products. The external surfaces of
the sinks were cleaned using microfibre cloths and hypochlorite
solution. After the intervention, sinks and faucet surfaces were
cleaned with a unique mop (specific for this purpose). Filters
were replaced monthly according to the manufacturer’s rec-
ommendations, and siphons and tap aerators were replaced
every three months. Using filtered water from central sinks
became mandatory for patient daily hygiene. Dirty water was
discarded in a disposal room outside of the hospitalization
area. From April 2015 forward, 2% chlorhexidine-impregnated
washcloths were introduced in the ICU for patient hygiene
when water was not needed.

Additional strategies applied concomitantly during the
study period

Hand hygiene and contact precautions. Educational rounds
to reinforce compliance with hand hygiene and contact pre-
cautions were regularly performed. Both application of
alcohol-based solutions and washing hands with soap were
permitted for hand hygiene, although using alcohol-based so-
lution was strongly promoted. Patients colonized or infected
with MDR-GNB were placed under contact precautions and
retained under this condition until ICU discharge. Use of gloves
and aprons was mandatory for entering the isolation room.
Rooms were supplied with exclusive thermometer, blood
pressure cuff, and stethoscope. Nurse cohorting was applied
when possible.

Audits for hand hygiene in the ICU were performed at least
once per year since 2010. In the pre-intervention period,
compliance rate was 65%, and in the post-intervention period
70%. We did not perform audits for contact precautions.

Environmental cleaning. The current cleaning policies
were introduced in February 2012 in the ICU [19]. Cleaning was
performed using a microfibre cleaning system (TTS bucketless
system; TTS, Santa Giustina in Colle, Italy); cloths were soaked
in a basin containing 0.1% chlorine solution. Routine cleaning of
high-touch surfaces was performed using disinfectant wipes
with cationic surfactant tensioactifs, quaternary ammonium
compounds, and polymeric biguanide (Clinell Universal Wipes;
GAMA Healthcare, London, UK). Cloths were never shared be-
tween different rooms.

In 2016, ultraviolet light disinfection technologies were
introduced in the hospital for performing terminal cleaning of
isolated rooms.

Active surveillance cultures. An active surveillance pro-
gramme was introduced in ICU in 1992 [20]. Over the study
period, rectal swabs were performed at admission and weekly
thereafter during the patient stay in the ICU if patient per-
sisted with negative rectal swab. Adherence to this strategy
varied during the period. During pre-intervention, the monthly

average of rectal swabs performed was 48; during post-
intervention, the monthly average was 52.

Antimicrobial stewardship programme. In April 2012, an
antimicrobial stewardship programme was initiated to reduce
antimicrobial consumption, especially for carbapenems and
cephalosporins. The programme was based on an ‘audit and
feedback’ strategy and performed by an infectious diseases
physician and a pharmacist. Antimicrobial use was similar
before and after the intervention.

Microbiological study

Isolates were obtained from clinical samples using standard
microbiological methods. Identification was performed by
matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (Bruker Daltonik GmbH, Bremen, Germany) and
the antimicrobial susceptibility by microdilution (MicroScan®;
Beckman Coulter, Brea, CA, USA) using the European Commit-
tee on Antimicrobial Susceptibility Testing (EUCAST) recom-
mendations and criteria [21]. Carbapenemase activity was
tested by the modified Hodge test (with imipenem) and
confirmed by polymerase chain reaction (Xpert® Carba-R Kit;
Cepheid, Sunnyvale, USA).

Statistical analysis

The annual incidence rates were calculated by dividing the
number of new positive clinical samples for MDR-GNB during
the year by the annual sum of patient-days and multiplying by
1000. The same calculation was performed for K. pneumoniae
and P. aeruginosa. Crude relative risk (RR) and 95% confidence
interval (Cl) were also calculated by dividing the incidence
rates for the two different years. Segmented regression anal-
ysis of an interrupted time-series was used to assess the
changes in incidence rates from before to after the interven-
tion. In this method, each segment or time interval was defined
by level and trend [19,22]. A change in level was the difference
between the observed rate at the first point of the post-
intervention period and the rate predicted by the pre-
intervention time trend. A change in trend was identified as a
difference between the post- and pre-intervention slopes, with
a negative change in level and slope indicating a reduction in
the rates. The two-segment model was constructed with a pre-
intervention period of 43 months (January 2011 to July 2014)
and a post-intervention period of 29 months (August 2014 to
December 2016). For all tests, P < 0.05 was considered sta-
tistically significant. All modelling and statistical tests were
performed using Software R (R Core Team, Vienna, Austria).

Results

The study isolated 202 new cases of MDR-GNB among ICU-
admitted patients over a period of 35,909 patient-days. Of
these isolates, 100 were caused by K. pneumoniae (83 ESBL and
17 carbapenemase-producing strains) and 102 were caused by
XDR P. aeruginosa (82 non-VIM-carbapenemase producers and
20 VIM-carbapenemase). The overall incidences of MDR-GNB in
the pre- and post-intervention periods were 9.15 and 2.20 per
1000 patient-days, respectively. This yielded an RR between
both periods of 0.24 (95% Cl: 0.17—0.34). Analysis of the crude
RRs between consecutive years showed a statistically
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significant increase in total MDR-GNB rates in 2012 and 2013,
followed by a statistically significant decrease in 2015, by
which time the new protocols were established. However, the
crude RRs for MDR-GNB rose in 2016, mainly due to two out-
breaks. This was due to infection caused by a new strain of
carbapenemase-producing K. pneumoniae, which was traced
to neurosurgery wards, and the other was caused by XDR
P. aeruginosa between January and April 2016, but only
affected one of the units. Figure 2 and Table | summarizes the
changes in the annual number of cases and rates.

Segmented regression analysis of the interrupted
time-series

The slope before the intervention showed a statistically
significant ascendance for MDR-GNB rates, especially for MDR
K. pneumoniae (MDR P. aeruginosa rates were not significantly
ascendant). During the post-intervention period, no changes in
the slopes were observed on any of the analyses (Figure 2 and
Table 1). Overall, the intervention was associated with statis-
tically significant changes in the incidence rates when
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Figure 2. Changes in the incidence rates of multidrug-resistant bacteria in the intensive care units. (A) Multidrug-resistant Pseudomonas
aeruginosa. (B) Multidrug-resistant Klebsiella pneumoniae. (C) Overall multidrug-resistant Gram-negative bacteria.
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Figure 2. (continued).

compared with the pre-intervention period, with changes in
level of —13.638, —8.680, and —4.969 for total MDR-GNB, MDR
K. pneumoniae, and MDR P. aeruginosa rates, respectively
(Table II).

Discussion

The removal of sinks from patients’ rooms and the imple-
mentation of other water-safe strategies in our ICU were
associated with improvements in endemic MDR-GNB rates.
Interestingly, the intervention had the greatest impact on
reducing new cases of K. pneumoniae, rather than of
P. aeruginosa, which is the micro-organism classically associ-
ated with water and moist environments in critical care units
[23—26]. Although this finding is difficult to interpret, it could
reflect differences in the adhesion to biofilm, which would
favour P. aeruginosa spreading further down into the waste-
water drainage. By contrast, K. pneumoniae would remain in
the proximal drains, facilitating faster elimination.

Several studies have demonstrated the role of contaminated
sinks in sporadic colonization of patients after an outbreak or
during prolonged outbreaks of MDR-GNB in ICU [9,12,17,27]. To
control new cases, most of these introduced chemical disin-
fection and/or sink replacement. As evidenced by their results,
these strategies helped to control the grade of sink contami-
nation but often failed to eliminate contamination because
MDR bacteria tended to reappear [9,10,12,15,28—30]. This
suggests that persistent colonization remained further down in
the pipes in most water systems. In our case, we decided to
remove the sinks from patient rooms based on two main ar-
guments. First, since their installation, the sinks in our ICU
were used for handwashing, patient daily hygiene, and dis-
carding dirty water from colonized patients, which probably

meant that we had high rates of contamination throughout the
system. Second, there was insufficient evidence about the best
agent, volume, and time of exposure for optimal chemical
disinfection.

Notably, despite the number of new acquisitions decreasing
after introducing our intervention, we failed to eliminate MDR-
GNB transmission in our wards. This could explain the diffi-
culties in avoiding outbreaks caused by new strains from other
parts of the hospital.

The main limitation of this study is that we did not perform
water-testing or other environmental screening before the
intervention. However, in 2013 we explored sinks of one of the
two ICU wards. The inspection showed deteriorated siphons
which had a large amount of biofilm in the pipe light. The
biofilm tested positive for different types of micro-organism
such as P. aeruginosa, Stenotrophomonas maltophilia, and
different ESBL-producing Enterobacteriaceae, although none
of the isolates belonged to our endemic MDR bacteria. We
contend that this previous finding — along with the sharp
reduction of new acquisitions of MDR-GNB observed after
removing sinks and changing water use policies — supports our
pre-intervention hypothesis. That is, our endemic bacteria
were ubiquitous in the ICU sinks and perpetuated the cycle of
new colonization or infection of patients. In addition, the study
design allowed us to measure the impact of specific compo-
nents of the intervention because other infection control
strategies did not change between the pre- and post-
intervention periods. Indeed, there were no changes in either
the antibiotic stewardship policy or the complexity of patients
admitted to ICU during the study period, both of which could be
potential confounders. As we previously reported, rates of
A. baumannii infection fell rapidly after changing our cleaning
procedures, though there was no change in the rates of other
MDR-GNB [19]. These observations are consistent with the main
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Table |
Changes in the incidence rates of multidrug-resistant bacteria in the intensive care units
Variable 2011 2012 2013 2014 2015 2016
Sum of patient-days 5703 6161 2709 2221 6384 6795
Pseudomonas aeruginosa
No. of new cases 15 35 21 14 8 9
Incidence rate x 1000 2.63  5.68 7.76 1.73 1.25 1.31
patient-days
Relative risk (95% Cl)? 2.16 (1.18-3.95) 1.36 (0.79—2.34) 0.81 (0.41—1.60) 0.20 (0.08—0.47) 1.06 (0.41—2.74)
Klebsiella pneumoniae
No. of new cases 17 25 23 20 7
Incidence rate x 1000 2.98 4.06 8.50 2.48 1.10 1.18
patient-days
Relative risk (95% CI)* 1.36 (0.73—2.52) 2.09 (1.19-3.69) 1.06 (0.58—1.93) 0.12 (0.05-0.29) 1.07 (0.39—2.96)
Total MDR-GNB
No. of new cases 32 60 44 34 15 17
Incidence rate x 1000 5.61  9.74 16.25 4.21 2.35 2.50

patient-days
Relative risk (95% Cl)?

1.74 (1.13-2.67)

1.67 (1.13—2.46)

0.94 (0.60—1.47)

0.15 (0.08—0.28)

1.07 (0.53—2.13)

Cl, confidence interval; MDR-GNB, multidrug-resistant Gram-negative bacteria.
@ Calculated as incidence rate of the current year/incidence rate of the previous year.

reservoir for A. baumannii being dry surfaces, and the main
reservoir for other MDR-GNB being wet areas. In this regard, a
recent study conducted in the Netherlands showed that
removing sinks from patients’ rooms and introducing water-
free patient care improved the control of sporadic GNB trans-
mission, including MDR-GNB, in settings with low levels of
endemic GNB [31].

In conclusion, this is the first study to show that removing
sinks from patients’ rooms and implementing other water-safe

Table Il
Impact of the water-safe measures on the monthly incidence rates
of multidrug-resistant Gram-negative bacteria ®

Parameter estimates Coefficient Standard  P-value
error
Pseudomonas aeruginosa
Constant 3.400 1.379 0.016
Slope before intervention 0.075 0.055 0.174
Change in level after —4.969 2.152 0.024
intervention
Change in slope after —0.101 0.113 0.374
intervention
Klebsiella pneumoniae
Constant 1.805 1.562 0.252
Slope before intervention 0.169 0.062 0.008
Change in level after —8.680 2.403 <0.001
intervention
Change in slope after -0.125 0.128 0.332
intervention
Total multidrug-resistant Gram-negatives
Constant 5167 1854 0.007
Slope before intervention 0.245 0.073 0.001
Change in level after —13.638 2.892 <0.001
intervention
Change in slope after —0.226 0.152 0.140

intervention

2 Segmented regression analysis of interrupted time-series.

measures can be effective tools in the fight against MDR-GNB in
highly endemic ICU settings with poor control. The study also
supports the argument that sinks have important roles in out-
breaks and in maintaining high endemic rates in ICU settings.
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